
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 151, Number 9, September 2023, Pages 4063–4078
https://doi.org/10.1090/proc/16436

Article electronically published on June 16, 2023

SUPERLINEAR STOCHASTIC HEAT EQUATION ON R
d

LE CHEN AND JINGYU HUANG

(Communicated by Zhen-Qing Chen)

Abstract. In this paper, we study the stochastic heat equation (SHE) on R
d

subject to a centered Gaussian noise that is white in time and colored in space.
We establish the existence and uniqueness of the random field solution in the
presence of locally Lipschitz drift and diffusion coefficients, which can have
certain superlinear growth. This is a nontrivial extension of the recent work
by Dalang, Khoshnevisan and Zhang [Ann. Probab. 47 (2019), pp. 519–559],
where the one-dimensional SHE on [0, 1] subject to space-time white noise has
been studied.

1. Introduction

In this paper, we study the following stochastic heat equation (SHE) on R
d with

a drift term:

(1.1)

⎧⎪⎨⎪⎩
∂u(t, x)

∂t
=

1

2
Δu(t, x) + b (u(t, x)) + σ (u(t, x)) Ẇ (t, x), t > 0, x ∈ R

d,

u(0, ·) = u0(·),

with both b and σ being locally Lipschitz continuous. The noise Ẇ is a centered
Gaussian noise which is white in time and colored in space with the following
covariance structure

(1.2) E

[
Ẇ (s, y)Ẇ (t, x)

]
= δ(t− s)f(x− y).

We assume that the correlation function f in (1.2) satisfies the improved Dalang’s
condition:

Υα := (2π)−d

∫
Rd

f̂(ξ)dξ

(1 + |ξ|2)1−α
< ∞, for some 0 < α < 1,(1.3)
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where f̂(ξ) is the Fourier transform of f , namely, f̂ = Ff(ξ) =
∫
Rd f(x)e

−ix·ξdx.
Recall that condition (1.3) with α = 0 refers to Dalang’s condition [9]:

Υ(β) := (2π)−d

∫
Rd

f̂(dξ)

β + |ξ|2 < +∞ for some and hence for all β > 0.(1.4)

The case when f = δ0 refers to the space-time white noise. The solution to (1.1) is
understood in the mild formulation:

(1.5)

u(t, x) = (pt ∗ u0)(x) +

∫ t

0

∫
Rd

pt−s(x− y)b(u(s, y))dyds

+

∫ t

0

∫
Rd

pt−s(x− y)σ(u(s, y))W (ds, dy),

where the stochastic integral is the Walsh integral [8, 17],

pt(x) = (2πt)
−d/2

exp
(
−|x|2/2t

)
is the heat kernel, and “∗” denotes the convolution in the spatial variable.

Motivated by the work of Fernández Bonder and Groisman [11], Dalang, Khosh-
nevisan and Zhang [10] established the global solution with superlinear and locally
Lipschitz coefficients for the one-dimensional SHE on [0, 1] subject to the space-time
white noise. In particular, they assumed that

|b(z)| = O (|z| log |z|) and |σ(z)| = o
(
|z| (log |z|)1/4

)
.(1.6)

Foondun and Nualart [12] studied SHE with an additive noise, i.e., σ(·) ≡ const.,
and showed that the solution to (1.1) blows up in finite time if and only if b satisfies
the Osgood condition: ∫ ∞

c

1

b(u)
du < ∞ for some c > 0.(1.7)

Salins [15] studied this problem for SHE on a compact domain in R
d under the

following Osgood-type conditions, which are weaker than (1.6): There exists a
positive and increasing function h : [0,∞) → [0,∞) that satisfies∫ ∞

c

1

h(u)
du = ∞ for all c > 0

such that for some γ ∈ (0, 1/2) (which depends on the noise),

|b(z)| ≤ h (|z|) for all z ∈ R, and |σ(z)| ≤ |z|1−γ (h (|z|))γ for all z > 1.

(1.8)

Extending the above results to the SHE on the whole space Rd with both superlinear
drift and diffusion coefficients is a challenging problem due to the noncompactness
of the spatial domain. Indeed, for the wave equation on R

d (d = 1, 2, 3), the
compact support of the corresponding fundamental solution can help circumvent
this difficulty; see Millet and Sanz-Solé [14]. The aim of this present paper is to
carry out such extension by proving the following theorem:

Theorem 1.1. Assume the improved Dalang’s condition (1.3) is satisfied for some
α ∈ (0, 1). Let u(t, x) be the solution to (1.1) starting from u0 ∈ L∞(Rd) ∩ Lp(Rd)
for some p > (d+ 2)/α. Suppose that b and σ are locally Lipschitz functions such
that b(0) = σ(0) = 0.
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(a) (Global solution) If

max

(
|b(z)|
log |z| ,

|σ(z)|
(log |z|)α/2

)
= o(|z|) as |z| → ∞,(1.9)

then for any T > 0, there is a unique solution u(t, x) to (1.1) for all (t, x) ∈
(0, T ]× R

d.
(b) (Local solution) If

max

(
|b(z)|
log |z| ,

|σ(z)|
(log |z|)α/2

)
= O(|z|) as |z| → ∞,(1.10)

then for some deterministic time T > 0, there exists a unique solution
u(t, x) to (1.1) for all (t, x) ∈ (0, T ]× R

d.
(c) In either case (a) or (b), the solution u(t, x) is Hölder continuous: u ∈

Cα/2−, α− (
(0, T ]× R

d
)
a.s., where Cα1−, α2− (D) denotes the Hölder con-

tinuous function on the space-time domain D with exponents α1 − ε and
α2 − ε in time and space, respectively, for any small ε > 0.

Theorem 1.1 is proved in Section 3.

Remark 1.2 (Critical vs sub-critical cases). We call the case under conditions
in (1.10) the critical case and the one in (1.9) the sub-critical case. Dalang et
al. [10] established the global solution for the critical case using the semigroup
property of the heat equation. In this paper, we cannot restart our SHE (1.1) to
pass the local solution to global solution due to the fact that it is not clear whether
at time T , u(T, ·) as the initial condition for the next step is again an element in
L∞(Rd)∩Lp(Rd) a.s. This issue does not present for a continuous random field on
a compact spatial domain, which is the case in [10] and [15].

Remark 1.3 (Regularity of the initial conditions). In [10], the initial condition
u0 is assumed to be a Hölder continuous function on [0, 1]. In contrast, in this
paper, we only assume that u0 ∈ L∞(Rd) ∩ Lp(Rd) for some large p. This is
one example of the smoothing effect of the heat kernel in the stochastic partial
differential equation context. This improvement from a Hölder continuous function
to a measurable function is due to the factorization representation of the solution
(see (2.10)). Similar arguments using this factorization have also been carried out
by Salins [15].

Remark 1.4. The assumption b(0) = σ(0) = 0 in Theorem 1.1 is essential because
when τ defined in (1.13) is nonzero, then one needs to replace the term Jp

+(r, z)
on the far left-hand side of (2.12) by τp + Jp

+(r, z). With this replacement, the
double integral in (2.12) will not converge. The question of removing this restriction
remains for the future research.

Example 1.5 (Examples of b and σ in Theorem 1.1). (1) The function g(x) =
x sin(x) for x ∈ R is locally Lipschitz, but not globally Lipschitz, continuous with
linear growth and g(0) = 0. Hence Theorem 1.1 holds when either b or σ takes the
form of g. (2) For the function ga,b(x) := |x|b loga(1 + |x|) for x, a, b ∈ R, it is easy
to see that the conditions a+ b > 0 and a + b ≥ 1 imply that ga,b(0) = 0 and ga,b
is locally Lipschitz continuous, respectively. The growth condition of either (1.9)
or (1.10) makes the further restriction on the suitable choices of (a, b).
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The extension given in Theorem 1.1 from a compact spatial domain to the entire
space R

d critically relies on the sharp moment formulas obtained in Theorem 1.6.
These moment formulas, as extensions of those in [2,4,5] to allow a Lipschitz drift
term, constitute the second and independent contribution of the paper. Indeed,
when the drift term is linear, i.e., b(u) = λu, then one can work with the following
heat kernel Gd(t, x) = pt(x)e

λt. However, when b is a Lipschitz nonlinear function,
the situation is much more trickier, especially if one wants to allow rough initial
conditions [2, 4, 5], namely, u0 being a signed Borel measure such that∫

Rd

e−a|x|2 |u0|(dx) < ∞ for all a > 0,(1.11)

where |u0| = u0,+ + u0,− and u0 = u0,+ − u0,− is the Jordan decomposition of
the signed measure u0. The existence and uniqueness of the solution u is proved
in [13] (the proof still works for signed Borel measure). We will prove the following
theorem:

Theorem 1.6 (Moment formulas with a Lipschitz drift term). Let u(t, x) be the
solution to (1.1) and suppose that b and σ are globally Lipschitz continuous functions
and the correlation function f satisfies the improved Dalang’s condition (1.3) for
some α ∈ (0, 1). Then we have the following:

(a) If u0 ∈ L∞(Rd), then for all p ≥ max
(
2, 2−6L−2

b Υ−1
α

)
, t > 0 and x ∈ R

d,
it holds that

(1.12) ||u(t, x)||p ≤
(τ
2
+ 2 ||u0||L∞

)
exp

(
Ctmax

(
p1/α L2/α

σ ,Lb

))
,

where ||·||p and ||·||L∞ denote the Lp (Ω)-norm and L∞(Rd)-norm, respec-
tively,

τ :=
|b(0)|
Lb

∨ |σ(0)|
Lσ

,(1.13)

C = max
(
4, 26/α−1Υ

1/α
α

)
, and

Lb := sup
z∈R

|b(z)− b(0)|
|z| and Lσ := sup

z∈R

|σ(z)− σ(0)|
|z| .(1.14)

(b) If u0 is a rough initial condition (see (1.11)), then for all t > 0, x ∈ R
d

and p ≥ 2,

||u(t, x)||p ≤
√
3 [τ + J+(t, x)] exp

(
Ctmax

(
p1/α L2/α

σ ,Lb

))
,(1.15)

where J+(t, x) := (pt ∗ |u0|)(x) and the constant C does not depend on
(t, x, p, Lb, Lσ).

(c) If u0 ∈ L∞(Rd) ∩ Lp(Rd) for some p ≥ (2 + d)/α and if σ(0) = b(0) = 0,
then for all t > 0,

(1.16)

∣∣∣∣∣
∣∣∣∣∣ sup
(s,x)∈[0,t]×Rd

u(s, x)

∣∣∣∣∣
∣∣∣∣∣
p

≤ ||u0||L∞ + C ||u0||Lp (Lb + Lσ) exp
(
Ctmax

(
p1/αL2/α

σ , Lb

))
,

where ||·||Lp denotes the Lp(Rd)-norm and the constant C does not depend
on (t, x, p, Lb, Lσ).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SUPERLINEAR STOCHASTIC HEAT EQUATION ON R
d 4067

Remark 1.7. Part (a) of Theorem 1.6 can be derived from part (b) by noticing that
J+(t, x) ≤ ||u0||L∞ . However, we still keep part (a) due to the simplicity of its
proof.

Using the moment bounds in (1.15), one can extend the Hölder regularity from
the SHE without drift (see [16] for the bounded initial condition case and [4] for
the rough initial condition case) to the one with a Lipschitz drift.

Corollary 1.8 (Hölder regularity). Let u(t, x) be the solution to (1.1) starting from
a rough initial condition (see (1.11)) and suppose that b and σ are globally Lipschitz
continuous functions. If the correlation function f satisfies the improved Dalang’s
condition (1.3) for some α ∈ (0, 1). Then u ∈ Cα/2−, α− (

(0,∞)× R
d
)
a.s., i.e.,

Hölder continuous with orders β/2 and β for time and space respectively, for any
β < α.

Parts (a), (b), and (c) of Theorem 1.6 are proved in Sections 2.1, 2.3, and 2.4,
respectively. Corollary 1.8 is proved in Section 2.5.

Finally, we list a few open questions for future exploration: (1) Theorem 1.1
cannot handle either the constant one initial condition or the Dirac delta initial
condition. It is interesting to investigate if either global or local solution exists for
these two special initial conditions. (2) Can one improve Theorem 1.1 by relaxing
the growth conditions in (1.9) and (1.10) to the Osgood-type conditions in (1.8) as
in [15]?

In the rest of the paper, we prove Theorems 1.6 and 1.1 in Sections 2 and 3,
respectively.

2. Moment bounds with a Lipschitz drift term

2.1. The bounded initial data case – proof of part (a) of Theorem 1.6.

Proof of Theorem 1.6(a). By Minkowski’s inequality and the Burkholder-Davis-
Gundy inequality,

||u(t, x)||p

≤ (pt ∗ u0)(x) +

∫ t

0

∫
Rd

pt−s(x− y)
(
|b(0)|+ Lb ||u(s, y)||p

)
dyds

+ zp

(∫ t

0

∫
Rd

∫
Rd

pt−s(x− y)pt−s(x− y′)
(
|σ(0)|+ Lσ ||u(s, y)||p

)
×
(
|σ(0)|+ Lσ ||u(s, y′)||p

)
f(y − y′)dydy′ds

)1/2

,

where zp is the constant coming from the Burkholder-Davis-Gundy inequality and
zp ∼ 2

√
p as p → ∞; see [6, Theorem 1.4] and references therein. For β > 0,

consider the following norm

Nβ(u) := sup
(t,x)∈(0,∞)×Rd

e−βt ||u(t, x)||p .
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Then we see that

e−βt ||u(t, x)||p
≤ ‖u0‖L∞

+

∫ t

0

∫
Rd

e−β(t−s)pt−s(x−y)

(
|b(0)|+Lb

(
sup

(s,y)∈(0,∞)×Rd

e−βs‖u(s, y)‖p

))
dyds

+zp

(∫ t

0

∫
Rd

∫
Rd

e−2β(t−s)pt−s(x− y)pt−s(x− y′)

×
(
|σ(0)|+ Lσ sup

(s,y)∈(0,∞)×Rd

e−βs ||u(s, y)||p

)2

f(y − y′)dydy′ds

)1/2

.

Hence,

Nβ(u) ≤ ||u0||L∞ +
1

β
(|b(0)|+ Lb Nβ(u))

+ zp

(
(2π)−d

∫ ∞

0

∫
Rd

e−2βse−s|ξ|2 f̂(ξ)dξds

)1/2 (
|σ(0)|+ Lσ Nβ(u)

)
.

By the improved Dalang’s condition (1.3) and by assuming that β > 1/2, we see
that

(2π)
−d

∫ ∞

0

∫
Rd

e−2βse−s|ξ|2 f̂(ξ)dξds

= (2π)
−d

∫
Rd

f̂ (dξ)

(2β + |ξ|2)1−α
(2β + |ξ|2)α

≤ (2β)−αΥα.

Therefore,

Nβ(u) ≤ ||u0||L∞+
Lb

β

(
|b(0)|
Lb

+Nβ(u)

)
+zp (2β)

−α/2
Υ1/2

α Lσ

(
|σ(0)|
Lσ

+Nβ(u)

)
.

Now by choosing β large enough, namely,

β >
1

2
,

Lb

β
≤ 1

4
,

zp (2β)
−α/2

Υ1/2
α Lσ ≤ 1

4
⇐⇒ β > max

(
4Lb,

1

2
,
1

2

(
16z2pL

2
σΥα

)1/α)
,

we form a contraction map, which can be easily solved:

Nβ(u) ≤ 2 ||u0||L∞ +
|b0|
2Lb

∨ |σ(0)|
2Lσ

.

Notice that zp ≤ 2
√
p, we have that

1

2
<

1

2

(
16z2pL

2
σΥα

)1/α ⇐⇒ 1/p < 64L2
bΥα.

Therefore, for all t > 0, when 1/p < min
(
64L2

bΥα, 1/2
)
, we can take

max

(
4Lb,

1

2

(
16(2

√
p)2L2

σΥα

)1/α)
≤ max

(
4, 26/α−1Υ1/α

α

)
max

(
Lb, p

1/αL2/α
σ

)
=: β
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to have that

||u(t, x)||p ≤
(
2 ||u0||L∞ +

|b0|
2Lb

∨ |σ(0)|
2Lσ

)
exp (βt) , for all t > 0.

This proves part (a) of Theorem 1.6. �

2.2. A Gronwall-type lemma. Let us introduce some functions. For a, b ≥ 0,
denote

ka,b(t) :=

∫
Rd

(af(z) + bt) pt(z)dz = ak1,0(t) + bt.(2.1)

By the Fourier transform, this function can be written in the following form

k1,0(t) := (2π)−d

∫
Rd

f̂(dξ) exp

(
− t|ξ|2

2

)
.(2.2)

Define ha,b
0 (t) := 1 and for n ≥ 1,

ha,b
n (t) =

∫ t

0

ds ha,b
n−1(s)ka,b(t− s).(2.3)

Let

Ha,b(t; γ) :=

∞∑
n=0

γnha,b
n (t), for all γ ≥ 0.(2.4)

When we have a = 1 and b = 0, we will use k(t), hn(t) and H(t; γ) to denote k1,0(t),
h1,0
n (t) and H1,0(t; γ), respectively. Note that this convention makes our notation

in case of a = 1 and b = 0 consistent with those in [4], [5] or [1]. The following
lemma generalizes Lemma 2.5 in [5] or Lemma 3.8 in [1] from the case a = 1 and
b = 0 to the case with general parameters a and b.

Lemma 2.1. Suppose that the correlation function f satisfies Dalang’s condi-
tion (1.4). Then for all a ≥ 0, b ≥ 0, and γ ≥ 0, it holds that

lim sup
t→∞

1

t
logHa,b(t; γ) ≤ inf

{
β > 0 : aΥ(2β) +

b

2β2
<

1

2γ

}
,(2.5)

where Υ(β) is defined in (1.4).

Proof. Here we follow the arguments in the proof of Lemma 3.8 of [1]. In particular,

lim sup
t→∞

1

t
logHa,b(t; γ) ≤ inf

{
β > 0;

∫ ∞

0

e−βtHa,b(t; γ)dt < ∞
}
.
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Notice that∫ ∞

0

e−βtHa,b(t; γ)dt =
∑
n≥0

γn

∫ ∞

0

e−βtha,b
n (t)dt

=
∑
n≥0

γn

[∫ ∞

0

e−βtka,b(t)dt

]n [∫ ∞

0

e−βtha,b
0 (t)dt

]

=
1

β

∑
n≥0

γn

[
a

∫ ∞

0

e−βtk(t)dt+
b

β2

]n

=
1

β

∑
n≥0

γn

[
a (2π)−d

∫
Rd

f̂(dξ)

β + |ξ|2
2

+
b

β2

]n

=
1

β

∑
n≥0

γn

[
2aΥ(2β) +

b

β2

]n
,

where in the second equality we have used the Laplace transform to factorize the
time convolutions as product and in the fourth equality we have used (2.2). The
lemma is proved by noticing that∫ ∞

0

e−βtHa,b(t; γ)dt < ∞ ⇐⇒ 2aΥ(2β) +
b

β2
<

1

γ
.

One may check the proof of Lemma 3.8 of [1] for more details. This proves the
lemma. �

Corollary 2.2. Suppose that the correlation function f satisfies the improved
Dalang’s condition (1.3) for some α ∈ (0, 1). Then for all a ≥ 0 and b ≥ 0,
when γ > 0 is large enough, it holds that

lim sup
t→∞

1

t
logHa,b(t; γ) ≤ max

(
23/α (aCγ)

1/α
,
√
2bγ

)
,(2.6)

where the constant C can be chosen to be

C = (2π)−d 2−α max

(∫
|ξ|≤1

f̂(dξ),

∫
|ξ|>1

f̂(dξ)

|ξ|2(1−α)

)
.(2.7)

Proof. Notice that for β > 0,

Υ(2β) = (2π)−d

∫
Rd

1

(2β + |ξ|2)α
f̂(dξ)

(2β + |ξ|2)1−α

≤ (2π)−d

(2β)α

(∫
|ξ|≤1

f̂(dξ)

(2β)1−α
+

∫
|ξ|>1

f̂(dξ)

|ξ|2(1−α)

)
≤ C

(
1

β
+

1

βα

)
,

where the constant C can be chosen as in (2.7). When γ is large enough, we may
assume that β > 1. Hence, in light of (2.6),

aΥ(2β) +
b

2β2
≤ 2aC

βα
+

b

2β2
.
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Therefore,

aΥ(2β) +
b

2β2
<

1

2γ
⇐=

2aC

βα
+

b

2β2
<

1

2γ

⇐=
2aC

βα
<

1

4γ
and

b

2β2
<

1

4γ

⇐⇒ β > 23/α (aCγ)1/α and β >
√
2bγ.

This proves the corollary. �

2.3. Moment bounds for rough initial data – proof of part (b) of Theo-
rem 1.6. In this part, we extend the moment bounds obtained in [4] to allow a
Lipschitz drift term.

Proof of Theorem 1.6(b). Taking the p-th norm on both sides of the mild form (1.5)
with p ≥ 2 and applying the Minkowski inequality, we see that

||u(t, x)||p≤J+(t, x)+Lb

∫ t

0

ds

∫
Rd

pt−s(x−y)

(
|b(0)|
Lb

+||u(s, y)||p
)
dy+||I(t, x)||p ,

(2.8)

where we use I(t, x) to denote the stochastic integral in (1.5).
By the Burkholder-Davis-Gundy inequality (see also a similar argument in the

step 1 of the proof of Theorem 1.7 of [4] on p. 1000), we see that

||I(s, y)||2p ≤4pL2
σ

∫ s

0

∫∫
R2d

ps−r(y − z1)ps−r(y − z2)f(z1 − z2)

×
√
2

(
σ(0)2

L2
σ

+ ||u(r, z1)||2p
)√

2

(
σ(0)2

L2
σ

+ ||u(r, z2)||2p
)
drdz1dz2.

Then by the sub-additivity of square root,

||I(t, x)||2p ≤8pL2
σ

∫ t

0

ds

∫∫
R2d

dy1dy2 pt−s(x− y1)pt−s(x− y2)f(y1 − y2)

×
(
|σ(0)|
Lσ

+ ||u(s, y1)||p
)(

|σ(0)|
Lσ

+ ||u(s, y2)||p
)
.

(2.9)

By the Cauchy-Schwartz inequality applied to the dt integral, the square of second
term on the right-hand side of (2.8) is bounded by

L2
b t

∫ t

0

ds

(∫
Rd

pt−s(x− y)

(
|b(0)|
Lb

+ ||u(s, y)||p
)
dy

)2

.
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Hence, by raising both sides of (2.8) by a power two and recalling that the constant
τ is defined in (1.13), we obtain that

||u(t, x)||2p ≤ 3J2
+(t, x) + 3L2

b t

∫ t

0

ds

(∫
Rd

pt−s(x− y)

(
|b(0)|
Lb

+ ||u(s, y)||p
)
dy

)2

+ 24pL2
σ

∫ t

0

ds

∫∫
R2d

dy1dy2 pt−s(x− y1)pt−s(x− y2)f(y1 − y2)

×
(
|σ(0)|
Lσ

+ ||u(s, y1)||p
)(

|σ(0)|
Lσ

+ ||u(s, y2)||p
)

≤ 3J2
+(t, x) + 3

∫ t

0

ds

∫∫
R2d

dy1dy2 pt−s(x− y1)pt−s(x− y2)

×
(
8pL2

σ f(y1 − y2) + L2
b t
) (

τ + ||u(s, y1)||p
)(

τ + ||u(s, y2)||p
)
.

Now apply the same arguments as those in the proof of Theorem 1.7 of [4] with
k(t) replaced by k8pL2

σ,L
2
b
(t) to see that

||u(t, x)||p ≤
[
τ +

√
3 J+(t, x)

]
H8pL2

σ,L
2
b
(t; 1)

1/2
.

In particular, if f satisfies the improved Dalang’s condition (1.3) for some α ∈ (0, 1),
then by Corollary 2.2, for all t > 0 and x ∈ R

d,

||u(t, x)||p ≤
√
3

[
|b(0)|
Lb

∨ |σ(0)|
Lσ

+ J+(t, x)

]
exp

(
Ctmax

(
p1/α L2/α

σ ,Lb

))
.

This proves part (b) of Theorem 1.6. �

2.4. Uniform moment bounds – Proof of part (c) of Theorem 1.6.

Proof of Theorem 1.6(c). Fix arbitrary T > 0 and recall that α ∈ (0, 1) as in (1.3).
The proof relies on the factorization lemma (see, e.g., Section 5.3.1 of [7] or Section
3 of [3]), which says that under the improved Dalang’s condition (1.3), the solution
to (1.1) can be factorized as follows:

u(t, x) = (pt ∗ u0)(x) + Ψ(t, x) + Φ(t, x),(2.10)

where

Φ(t, x) =
sin(πα/2)

π

∫ t

0

∫
Rd

(t− r)−1+α/2pt−r(x− z)Y (r, z)dzdr with

Y (r, z) =

∫ r

0

∫
Rd

(r − s)−α/2pr−s(z − y)σ(u(s, y))W (ds, dy)

and

Ψ(t, x) =
sin(πα/2)

π

∫ t

0

∫
Rd

(t− r)−1+α/2pt−r(x− z)B(r, z)dzdr with

B(r, z) =

∫ r

0

∫
Rd

(r − s)−α/2pr−s(z − y)b (u(s, y)) dsdy .

It is clear that

sup
(t,x)∈[0,T ]×Rd

|(pt ∗ u0)(x)|p ≤ ||u0||pL∞(Rd) .
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Step 1. In this step, we will show that

E

(
sup

(t,x)∈[0,T ]×Rd

|Φ(t, x)|p
)

≤ C ||u0||pLp(Rd) L
p
σ exp

(
CTpmax

(
Lb, p

1/αL2/α
σ

))
.

(2.11)

Let p and q be a conjugate pair on positive numbers, i.e., 1/p + 1/q = 1, whose
values will be determined below. By Hölder’s inequality, we see that

|Φ(t, x)| ≤ sin(πα/2)

π

∫ t

0

(t− r)−1+α/2 ||pt−r(x− ·)||Lq(Rd) ||Y (r, ·)||Lp(Rd) dr

≤ C

∫ t

0

(t− r)−1+α/2−(1−1/q)d/2 ||Y (r, ·)||Lp
ρ(Rd) dr

≤ C

(∫ t

0

(t− r)(−1+α/2)q−(q−1)d/2dr

)1/q (∫ t

0

||Y (r, ·)||pLp(Rd) dr

)1/p

,

where we have used the fact that ||pt−r(x− ·)||qLq(Rd) ≤ C(t − r)−d(q−1)/2 in the

second inequality. Hence, since

(−1 + α/2) q − (q − 1) d/2 > −1 ⇐⇒ p > (2 + d)/α,

we have

E

(
sup

(t,x)∈[0,T ]×Rd

|Φ(t, x)|p
)

≤ CT

∫ t

0

E

(
||Y (r, ·)||pLp(Rd)

)
dr

= CT

∫ t

0

dr

∫
Rd

dz E (|Y (r, z)|p) .

Because b(0) = σ(0) = 0, we have

||Y (r, z)||2p ≤ L2
σ

∫ r

0

ds

∫∫
R2d

dydy′ (r − s)−αf(y − y′)pr−s(z − y) ||u(s, y)||p

×pr−s(z − y′) ||u(s, y′)||p ,

and by (1.15),

||u(s, y)||p ≤ C exp
(
CT max

(
Lb, p

1/αL2/α
σ

))
J+(s, y).

Combining the above three bounds shows that

E

(
sup

(t,x)∈[0,T ]×Rd

|Φ(t, x)|p
)

≤ C exp
(
CTpmax

(
Lb, p

1/αL2/α
σ

))∫ t

0

dr

∫
Rd

dz Ip/2(r, z)

with

I(r, z) :=

∫ r

0

ds

∫∫
R2d

dydy′ (r−s)−αpr−s(z−y)J+(s, y)f(y−y′)pr−s(z−y′)J+(s, y
′).
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By the same arguments as the proof of Theorem 1.8 of [4] (see, in particular, the
bound for I1,1(t, x, x

′) on p. 1006 ibid.), we see that

I(r, z) ≤ J2
+(r, z)

∫ r

0

∫
Rd

e−
(r−s)s|ξ|2

r (r − s)−αf̂(ξ)dξds

≤ CJ2
+(r, z)

∫
Rd

f̂(ξ)dξ

(1 + |ξ|2)1−α
.

By Hölder’s inequality, we see that

∫ T

0

dr

∫
Rd

dz Jp
+(r, z) ≤

∫ T

0

dr

∫
Rd

dx p2r(x− z)

∫
Rd

dz|u0(z)|p = T ||u0||pLp(Rd) .

(2.12)

Therefore,

E

(
sup

(t,x)∈[0,T ]×Rd

|Φ(t, x)|p
)

≤ CLp
σe

CTpmax(Lb, p
1/αL2/α

σ )
∫ T

0

dr

∫
Rd

dz Jp
+(r, z).

Combining the last two inequalities proves (2.11).

Step 2. In this step, we will show that

E

(
sup

(t,x)∈[0,T ]×Rd

|Ψ(t, x)|p
)

≤ C ||u0||pLp(Rd) L
p
b exp

(
CTpmax

(
Lb, p

1/αL2/α
σ

))
.

(2.13)

By the same arguments as in Step 1, we see that

E

(
sup

(t,x)∈[0,T ]×Rd

|Φ(t, x)|p
)

= CT

∫ t

0

dr

∫
Rd

dz E (|B(r, z)|p) .

Notice that

||B(r, z)||p

≤Lb

∫ r

0

∫
Rd

(r−s)−α/2pr−s(z − y) ||u(s, y)||p dsdy

≤CLb exp
(
CT max

(
Lb, p

1/αL2/α
σ

))∫ r

0

∫
Rd

(r−s)−α/2pr−s(z−y)J+(s, y)dsdy

≤CLb exp
(
CT max

(
Lb, p

1/αL2/α
σ

))
J+ (r, z)

∫ r

0

(r−s)−α/2ds,

from which we deduce (2.13). This proves part (c) of Theorem 1.6.

�

2.5. Hölder regularity – proof of Corollary 1.8.

Proof of Corollary 1.8. Denote the last two parts of right-hand side of (1.5) by
B(t, x) and I(t, x). One can use the same arguments as those in the proof of Theo-
rem 1.8 of [4], but with the slightly different moment formula (1.15), to show that
I ∈ Cα/2−, α− (

(0,∞)× R
d
)
. It remains to show that B ∈ Cα/2−, α− (

(0,∞)× R
d
)
.
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Now choose and fix arbitrary n > 1 and p > 2. For any (t, x), (t′, x′) ∈ [1/n, n]×R
d

with t′ > t, an application of the Minkowski inequality shows that

||B(t, x)−B(t′, x′)||p ≤ CLb (I1(t, x, x
′) + I2(t, t

′, x′) + I3(t, t
′, x′)) , with

I1(t, x, x
′) =

∫ t

0

∫
Rd

|pt−s(x− y)− pt−s(x
′ − y)| ||u(s, y)||p dsdy,

I2(t, t
′, x′) =

∫ t

0

∫
Rd

|pt−s(x
′ − y)− pt′−s(x

′ − y)| ||u(s, y)||p dsdy,

I3(t, t
′, x′) =

∫ t′

t

∫
Rd

pt′−s(x
′ − y) ||u(s, y)||p dsdy.

By the moment formula (1.15) and by setting μ(dz) := |u0|(dz) + τdz, we see that

I1(t, x, x
′) ≤ C

∫ t

0

ds

∫
Rd

dy

∫
Rd

μ(dz) |pt−s(x− y)− pt−s(x
′ − y)| ps(y − z),

I2(t, t
′, x′) ≤ C

∫ t

0

ds

∫
Rd

dy

∫
Rd

μ(dz) |pt−s(x
′ − y)− pt′−s(x

′ − y)| ps(y − z),

I3(t, t
′, x′) ≤ C

∫ t′

t

ds

∫
Rd

dy

∫
Rd

μ(dz) pt′−s(x
′ − y)ps(y − z).

It is clear that μ is a rough initial condition, i.e., condition (1.11) is satisfied for
μ. Denote J0(t, x) = (pt ∗ μ)(x). It is straightforward to see that I3(t, t

′, x′) ≤
C(t′ − t)J0 (t

′, x′). As for I1 and I2, for any α ∈ (0, 1), by Lemma 3.1 of [4], we
have that

I1(t, x, x
′)

≤C|x−x′|α
∫ t

0

ds

(t−s)α/2

∫
Rd

dy

∫
Rd

μ(dz)
[
p2(t−s)(x−y)+p2(t−s)(x

′−y)
]
p2s(y−z)

=C|x−x′|αt1−α/2 (J0(2t, x) + J0(2t, x
′)) ,

and similarly,

I2(t, t
′, x′) ≤ C(t′ − t)α/2

∫ t

0

ds

(t′ − s)α/2

∫
Rd

dy

∫
Rd

μ(dz) p4(t′−s)(x
′ − y)p4s(y − z)

≤ C(t′ − t)α/2J0 (4t, x
′) .

Combining the above bounds proves Corollary 1.8. �

3. Proof of Theorem 1.1

Proof of Theorem 1.1. For N ≥ 1, let us consider the truncated stochastic heat
equation:

(3.1)

uN (t, x) = (pt ∗ u0) (x) +

∫ t

0

∫
Rd

pt−s(x− y)bN (uN (s, y))dyds

+

∫ t

0

∫
Rd

pt−s(x− y)σN (uN (s, y))W (ds, dy),

where

σN (x) = σ

((
1 ∧ N

|x|

)
x

)
and bN (x) = b

((
1 ∧ N

|x|

)
x

)
.(3.2)
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Recall that LbN and LσN
denote the growth rate; see (1.14). According to Theorem

1.1 of [13], there exists a unique solution {uN (t, x) : t > 0, x ∈ R
d} to (3.1). In the

following, we will use C to denote a generic constant that may change its value at
each appearance, does not depend on (N, t, x, ε), but may depend on (p, α).

Step 1. In this step, we will prove (a). For any T > 0 fixed, consider the following
stopping time

τN := inf

{
t > 0 : sup

x∈Rd

|uN (t, x)| ≥ N

}
∧ T.

Noticing that for all M ≥ N , we have that τN ≤ τM and

uN (t, x) = uM (t, x) a.s. on (t, x) ∈ [0, τN )× R
d,

we can construct the solution u(t, x) via

u(t, x) = uN (t, x), for all N ≥ 1 and (t, x) ∈ [0, τN )× R
d.(3.3)

From the definition, it is clear that on 0 ≤ t ≤ τN ,

bN (uN (t, x))=b(uN (t, x))=b(u(t, x)) and σN (uN (t, x))=σ(uN (t, x))=σ(u(t, x)).

By the Chebyshev inequality and the moment formula (1.16),

P (0≤τN <T )=P

(
sup

(t,x)∈[0,T ]×Rd

|uN (t, x)|≥N

)
≤ 1

Np
E

(
sup

(t,x)∈[0,T ]×Rd

|uN (t, x)|p
)

≤ C

Np

(
||u0||pL∞ + C ||u0||pLp (LbN + LσN

)p exp
(
CpT max

(
LbN , p1/αL2/α

σN

)))
.

(3.4)

The sub-critical conditions in (1.9) imply that

LbN = o (logN) and LσN
= o

(
(logN)

α/2
)
,

which ensure that above probability in (3.4) goes to zero as N → ∞. Therefore, by
sending N → ∞, we see that u(t, x) is well defined on (0, T ]×R

d. The uniqueness
is inherited from the uniqueness of uN (t, x) in (3.1).

Step 2. Now we prove part (b), the proof of which is similar to that of part (a).
Fix an arbitrary T0 > 0. Denote

τN := inf

{
t > 0 : sup

x∈Rd

|uN (t, x)| ≥ N

}
∧ T0.

We claim that

lim
N→∞

P (0 ≤ τN < T ) = 0, for some nonrandom constant T > 0.(3.5)

Indeed, for all ε > 0, by replacing T by ε in (3.4), we see that

(3.6) P (0 ≤ τN < ε)

≤ C

Np

(
||u0||pL∞ + C ||u0||pLp (LbN + LσN

)
p
exp

(
Cpεmax

(
LbN , p1/αL2/α

σN

)))
.

By the critical conditions in (1.10), for some C > 0,

LbN ≤ C logN and LσN
≤ C(logN)α/2.
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Hence, when ε is small enough, by plugging the above constants into (3.6), we see
that the probability in (3.6) goes to zero as N → ∞. Therefore, by choosing any
positive constant T ∈ (0, ε), we prove the claim (3.5). The uniqueness is proved in
the same way as the proof of part (a).

Step 3. Finally, the Hölder continuity of the solution of u inherits that of uN

thanks to their relation given in (3.3), where the Hölder regularity of uN with given
exponents is proved in Corollary 1.8. This completes the proof of Theorem 1.1.

�
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